
CTC Connect Wireless API StartupCTC Connect Wireless API Startup
ManualManual

2

• Summary .3

• Postman Setup . .3

• Send Commands . .4

• Return Commands .8

• Notify Commands . 10

Table of Contents

The ACCESS360 ConnectBridge Wireless Gateway contains software and firmware proprietary
to CTC . Use of the ACCESS360 is, at all times, subject to the CTC’s then-current Software End
User License Agreement available at www .ctconline .com . All data and information provided by,
or collected from, you is subject to CTC’s privacy policy available at www .ctconline .com .

3

Summary
The Connection Technology Center wireless sensor solution communicates
using websocket technology . This creates synchronous communication
between layers and allows real-time bidirectional transfer of commands . A few
of these commands are publicly available and documented for custom
integration purposes like user interfaces or automation solutions . The system
operates using a series of commands documented below .

The commands can be broken up into three different sections: Send,
Return, and Notify . Along with this document, a public Postman project
with sample commands is available online to help demonstrate these
commands . The setup for this project is documented in the following section .

Postman Setup
The easiest way to test system functionality is through a third-party tool called
Postman . This is a free powerful API platform to help create, test, and document
APIs . CTC has a public project available to fork that has prepopulated examples
of all commands currently available in the system . Use the following instructions
to install Postman, fork CTC’s project, and send/receive commands from an
Access Point .

Download and Fork:
1 . Download and Install the Postman desktop application here
2 . Open Postman and create an account or sign in if you already have an

account
3 . Begin fork of the project here
4 . Name and save fork to workspace as desired
5 . Return to the Postman desktop app and select the newly forked project in

the collections panel

https://www.postman.com/downloads/
https://www.postman.com/ctconline/team-workspace/ws-raw-request/66e826fdd6465626d9108413?action=share&creator=23717098&ctx=documentation

4

Send / Receive Commands:
1 . Click the “Variables” tab
2 . Modify the “Current value” column to match your devices and needs
3 . In the Collections tab expand the collection “CTC WebSocket Test Suite”
4 . Select “Websocket”
5 . Press the blue Connect button in the top right to connect to Access Point
6 . Select messages on the right-hand side a press “Send” to send commands
7 . Responses to commands and notifications (when subscribed) will appear in

the “Response” panel at the bottom

Send Commands
The Send Commands are externally triggerable commands that will trigger an
operation within the system . These are the primary ways to interact with the
system as a system integrator . The execution of these commands can result in a
Return Command or a Notify Command which are documented below . All Send
Commands can receive an RTN_ERR message if a problem occurs that identifies
the issue .

Subscribe to Changes
This command should be run after connecting
to the access point’s websocket . It will mark
this connection as wanting to be updated on
new readings and events .

{
 “Type”: “POST_SUB_CHANGES”,
 “From”: “UI”,
 “To”: “SERV”,
 “Data”: {
 }
}

Returns: RTN_ERR
Notifies: NA

Unsubscribe to Changes
This command will mark this connection as
not wanting to be updated on new readings
and events .

{
 “Type”: “POST_UNSUB_CHANGES”,
 “From”: “UI”,
 “To”: “SERV”,
 “Data”: {
 }
}

Returns: RTN_ERR
Notifies: NA

5

Get Dynamic Sensors
This command will retrieve information on all
serial numbers contained in the “Serials” array .
An empty array will return all known sensors
that have ever been connected to the system .

{
 “Type”: “GET_DYN”,
 “From”: “UI”,
 “To”: “SERV”,
 “Data”: {
 “Serials”: [int,]
 }
}

Returns: RTN_DYN, RTN_ERR
Notifies: NA

Get Connected Dynamic Sensors
This command will retrieve information on all
serial numbers currently connected to the
system .

{
 “Type”: “GET_DYN_CONNECTED”,
 “From”: “UI”,
 “To”: “SERV”,
 “Data”: {
 }
}

Returns: RTN_DYN, RTN_ERR
Notifies: NA

Take Dynamic Vibration Reading
This command will trigger a vibration and
temperature reading on the sensor with
the given serial number . Returns an error if
a test was unable to be triggered . Notifies
subscribed clients when the test starts and
when the test ends .

{
 “Type”: “TAKE_DYN_READING”,
 “From”: “UI”,
 “To”: “SERV”,
 “Data”: {
 “Serial”: int
 }
}Returns: RTN_ERR

Notifies: NOT_DYN_READING_STARTED,
NOT_DYN_READING, NOT_DYN_TEMP

6

Take Dynamic Temperature Reading
This command will trigger a temperature
reading on the sensor with the given serial
number . Returns an error if a test was unable
to be triggered . Notifies subscribed clients
when the test ends .

{
 “Type”: “TAKE_DYN_TEMP”,
 “From”: “UI”,
 “To”: “SERV”,
 “Data”: {
 “Serial”: int
 }
}

Returns: RTN_ERR
Notifies: NOT_DYN_TEMP

Take Dynamic Battery Level Reading
This command will trigger a battery level
reading on the sensor with the given serial
number . Returns an error if a test was unable
to be triggered . Notifies subscribed clients
when the test ends .

{
 “Type”: “TAKE_DYN_BATT”,
 “From”: “UI”,
 “To”: “SERV”,
 “Data”: {
 “Serial”: int
 }
}

Returns: RTN_ERR
Notifies: NOT_DYN_BATT

Get Dynamic Vibration Records
This command will retrieve vibration reading
records for given serials in the “Serials” list
between the “Start” and “End” dates with a
limit set by “Max” . All parameters are optional .
“Serials” defaults to all serial numbers . “Start”
and “End” defaults to the most recent . “Max”
defaults to 25 .

{
 “Type”: “GET_DYN_READINGS”,
 “From”: “UI”,
 “To”: “SERV”,
 “Data”: {
 “Serials”: [int,],
 “Start”: “yyyy-mm-dd”,
 “End”: “yyyy-mm-dd”
 “Max”: int
 }
}

Returns: RTN_DYN_READINGS, RTN_ERR
Notifies: NA

7

Get Dynamic Temperature Records
This command will retrieve temperature
reading records for given serials in the
“Serials” list between the “Start” and “End”
dates with a limit set by “Max” . All parameters
are optional . “Serials” defaults to all serial
numbers . “Start” and “End” defaults to the
most recent . “Max” defaults to 25 .

{
 “Type”: “GET_DYN_TEMPS”,
 “From”: “UI”,
 “To”: “SERV”,
 “Data”: {
 “Serials”: [int,],
 “Start”: “yyyy-mm-dd”,
 “End”: “yyyy-mm-dd”,
 “Max”: int
 }
}

Returns: RTN_DYN_TEMPS, RTN_ERR
Notifies: NA

Get Dynamic Battery Records
This command will retrieve battery-level
reading records for given serials in the
“Serials” list between the “Start” and “End”
dates with a limit set by “Max” . All parameters
are optional . “Serials” defaults to all serial
numbers . “Start” and “End” defaults to the
most recent . “Max” defaults to 25 .

{
 “Type”: “GET_DYN_BATTS”,
 “From”: “UI”,
 “To”: “SERV”,
 “Data”: {
 “Serials”: [int,],
 “Start”: “yyyy-mm-dd”,
 “End”: “yyyy-mm-dd”,
 “Max”: int
 }
}

Returns: RTN_DYN_BATTS, RTN_ERR
Notifies: NA

8

Return Commands
The Return Commands are returned to a client after a Send Command is triggered .
These typically carry requested data or in the case of an error an error message .
These commands only occur in response to a Send Command and only go to the
connected client that sent the Send Command .

Return Dynamic Vibration Records
This command returns a list of data objects
representing a vibration reading . Ordered by
the most recent “Time” .

{
 “Type”: “RTN_DYN_READINGS”,
 “From”: “SERV”,
 “Target”: “UI”,
 “Data”: {
 “0”: {
 “ID”: int,
 “Serial”: str,
 “Time”: “yyyy-mm-dd”,
 “X”: str,
 “Y”: str,
 “Z”: str
 },
 “1”: ...
 }
}Triggered: GET_DYN_READINGS

Return Dynamic Temperature Records
This command returns a list of data objects
representing a temperature reading . Ordered
by the most recent “Time” .

{
 “Type”: “RTN_DYN_TEMPS”,
 “From”: “SERV”,
 “Target”: “UI”,
 “Data”: {
 “0”: {
 “ID”: int,
 “Serial”: str,
 “Time”: “yyyy-mm-dd”,
 “Temp”: int
 },
 “1”: ...
 }
}Triggered: GET_DYN_TEMPS

9

Return Dynamic Battery Level Records
This command returns a list of data objects
representing a battery-level reading . Ordered
by most recent “Time” .

{
 “Type”: “RTN_DYN_BATTS”,
 “From”: “SERV”,
 “Target”: “UI”,
 “Data”: {
 “0”: {
 “ID”: int,
 “Serial”: str,
 “Time”: “yyyy-mm-dd”,
 “Batt”: int,
 },
 “1”: ...
 }
}Triggered: GET_DYN_BATTS

Return Dynamic Sensors
This command returns a list of data objects
representing dynamic sensors with a key of
the dynamic sensor’s serial number .

{
 “Type”: “RTN_DYN”,
 “From”: “SERV”,
 “Target”: “UI”,
 “Data”: {
 “{Device Serial}”: {
 “Serial”: int,
 “Connected”: int,
 “AccessPoint”: int,
 “PartNum”: str,
 “ReadRate”: int,
 “GMode”: str,
 “FreqMode”: str,
 “ReadPeriod”: int,
 “Samples”: int,
 “HwVer”: str,
 “FmVer”: str
 }
 }
}Triggered: GET_DYN, GET_DYN_CONNECTED

10

Return Error
This command returns a data object
representing an error that occurred . “Attempt”
identifies what command experienced the
error and “Error” provides details on what
failed .

{
 “Type”: “RTN_ERR”,
 “From”: “SERV”,
 “Target”: “UI”,
 “Data”: {
 “Attempt”: str
 “Error”: str
 }
}Triggered: ALL

Notify Commands
The Notify Commands notify all connected clients currently subscribed to
changes that occurred within the system . When a client connects and sends
a “Subscribe to Changes” command it will receive these commands . A client
stops receiving these commands after it sends a “Unsubscribe to Changes”
command . Notify Commands can be triggered as a response to Send Commands
or automatically by internal events happening within the system .

Notify Access Point Connected
This command notifies all subscribed clients
when a new access point is connected or
disconnected . With the connection status
being represented with a 1 or 0 .

{
 “Type”: “NOT_AP_CONN”,
 “From”: “SERV”,
 “Target”: “UI”,
 “Data”: {
 “Serial”: int,
 “Connected”: int
 }
}Triggered: INTERNAL

11

Notify Dynamic Sensor Connected
This command notifies all subscribed clients
when a new dynamic sensor is connected or
disconnected . With the connection status
being represented with a 1 or 0 .

{
 “Type”: “NOT_DYN_CONN”,
 “From”: “SERV”,
 “Target”: “UI”,
 “Data”: {
 “Serial”: int,
 “Connected”: int,
 “AccessPoint”: int,
 “PartNum”: str,
 “ReadRate”: int,
 “GMode”: str,
 “FreqMode”: str,
 “ReadPeriod”: int,
 “Samples”: int,
 “HwVer”: str,
 “FmVer”: str
 }
}Triggered: INTERNAL

Notify Vibration Reading Started
This command notifies all subscribed clients
when a vibration reading triggered by an
external command has started .

{
 “Type”: “NOT_DYN_READING_STARTED”,
 “From”: “SERV”,
 “Target”: “UI”,
 “Data”: {
 “Serial”: int,
 “Success”: bool
 }
}Triggered: TAKE_DYN_READING

12

Notify Vibration Reading Complete
This command notifies all subscribed clients
when a vibration reading has been completed .
Can be triggered by an external command or
by the sensor’s configured read interval .

{
 “Type”: “NOT_DYN_READING”,
 “From”: “SERV”,
 “Target”: “UI”,
 “Data”: {
 “ID”: int,
 “Serial”: str,
 “Time”: “yyyy-mm-dd”,
 “X”: str,
 “Y”: str,
 “Z”: str
 }
}Triggered: TAKE_DYN_READING, INTERNAL

Notify Temperature Reading Complete
This command notifies all subscribed clients
when a temperature reading has been
completed . Can be triggered by an external
command or by the sensor’s configured read
interval .

{
 “Type”: “NOT_DYN_TEMP”,
 “From”: “SERV”,
 “Target”: “UI”,
 “Data”: {
 “ID”: int,
 “Serial”: str,
 “Time”: “yyyy-mm-dd”,
 “Temp”: int
 }
}Triggered: TAKE_DYN_TEMP, INTERNAL

Notify Battery Level Reading Complete
This command notifies all subscribed clients
when a battery-level reading has been
completed . Can be triggered by an external
command or by the sensor when it reaches a
low battery state .

{
 “Type”: “NOT_DYN_BATT”,
 “From”: “SERV”,
 “Target”: “UI”,
 “Data”: {
 “ID”: int,
 “Serial”: str,
 “Time”: “yyyy-mm-dd”,
 “Batt”: int
 }
}Triggered: TAKE_DYN_BATT, INTERNAL

